Parameter Efficient Fine Tuning Notes
Explaination of different Paramete Efficient Finetuning Techniques
Parameter Efficient Fine Tuning (PEFT)
Making Large Language Models Adaptable Without Breaking the Bank 💰
🎯 Learning Objectives
By the end of this presentation, you will:
- Understand why PEFT is crucial for modern AI applications
- Master 4 key PEFT techniques: Prompt Tuning, Prefix Tuning, LoRA, and QLoRA
- Implement these techniques with hands-on code examples
- Understand quantization fundamentals for QLoRA
🤔 Opening Question
Think about this: If a pre-trained GPT model has 175 billion parameters, and you want to fine-tune it for your specific task, what challenges might you face?
Take 30 seconds to think about it
📊 The Problem: Traditional Fine-Tuning
🔢 Quick Math Challenge - Model Memory Requirements
If each parameter is 16 bits (2 bytes), how much storage would you need for:
- Model weights: 175B × 2 bytes = ?
- Gradients: 175B × 2 bytes = ?
- Optimizer states: 175B × 8 bytes = ?
Total storage needed = ?
Why have we multipled by 8 for optimizer states
🧮 Quick Math Challenge - Model Computational Requirements
If one forward-backward pass with a single token requires ~6 operations per parameter, calculate:
- Operations per token: 175B × 6 = ?
- For a batch of 32 sequences with 512 tokens each: ? operations
- If your GPU computes at 100 TFLOPS (10¹⁴ operations/s), how many seconds per batch?
- How many kilowatt-hours to train on 1 trillion tokens? (Assuming 0.1 kWh per 10¹⁸ operations)
Why do we need ~6 operations per parameter in a forward-backward pass?
Traditional Approach Issues:
- Memory Explosion: Full fine-tuning requires storing gradients for ALL parameters
- Storage Nightmare: Need to save entire model for each task
- Computational Cost: Training 175B parameters = 💸💸💸
- Catastrophic Forgetting: Model forgets previously learned knowledge
💡 Enter PEFT: The Solution
Parameter Efficient Fine Tuning adapts large models by:
- Keeping original weights frozen ❄️
- Adding small, trainable modules
- Achieving similar performance with <1% trainable parameters
🎪 PEFT vs Full Fine-Tuning
Aspect | Full Fine-Tuning | PEFT |
---|---|---|
Trainable Parameters | 175B (100%) | 1.75M (0.01%) |
Memory Usage | ~1.4TB | ~14GB |
Training Time | Days/Weeks | Hours |
Storage per Task | 350GB | 3.5MB |
🎯 PEFT Technique #1: Soft Prompt Tuning
🤔 Curious Question
“What if we could teach a model new tasks just by changing how we ask questions?”
Core Concept
Instead of changing model weights, we learn soft prompts - trainable embeddings that guide the model’s behavior.
What Are Soft Prompts?
Soft prompts are continuous, learnable vectors in the embedding space that are prepended to the input tokens. Unlike discrete text prompts that use actual words, soft prompts are:
- Trainable parameters: Vectors initialized randomly or from existing embeddings
- Model-preserving: They don’t modify the underlying model weights
- Optimized directly: Updated via gradient descent during training
1
2
Traditional: "Translate to French: Hello world"
Soft Prompt: [LEARN][ABLE][TOKENS] + "Hello world"
During Training
- Initialize soft prompt vectors (e.g., 5-20 “virtual tokens”)
- Prepend these vectors to each input’s embedding
- Freeze the entire language model
- Update only the soft prompt vectors through backpropagation
Advantages
- Efficiency: Training requires vastly fewer parameters (0.01% of model size)
- Storage: Each task needs only to store small prompt vectors instead of full model copies
- Composability: Soft prompts can be combined for multi-task scenarios
- Privacy: The original model remains unchanged
🔧 Implementation Challenge
Complete this PyTorch implementation:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
class SoftPromptTuning(nn.Module):
def __init__(self, model, prompt_length, embedding_dim):
super().__init__()
self.model = model
self.prompt_length = prompt_length
# TODO: Initialize learnable prompt embeddings
self.soft_prompt = nn.Parameter(
torch.randn(prompt_length, embedding_dim) * 0.1
)
# Freeze the original model
for param in self.model.parameters():
param.requires_grad = False
def forward(self, input_ids, attention_mask):
batch_size = input_ids.shape[0]
# Get input embeddings from the model
input_embeds = self.model.get_input_embeddings()(input_ids)
# Expand soft prompt for batch
prompt_embeds = self.soft_prompt.unsqueeze(0).expand(
batch_size, -1, -1
)
# Concatenate prompt with input
full_embeds = torch.cat([prompt_embeds, input_embeds], dim=1)
# Create attention mask for full sequence
prompt_attention = torch.ones(
batch_size, self.prompt_length, device=attention_mask.device
)
full_attention = torch.cat([prompt_attention, attention_mask], dim=1)
return self.model(inputs_embeds=full_embeds,
attention_mask=full_attention)
# Usage example
# Load pre-trained model
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
# Initialize soft prompt appended model for finetuning
soft_prompt_model = SoftPromptTuning(model, prompt_length=20, embedding_dim=768)
Disadvantages:
- Complex Reasoning Tasks: Muti step logic, deep understanding of the context
- Non Generalization: Doesn’t generaraize well to unseen tasks during LLM training
- Less Interpretable: Less interpretable and harder to debug compared to human prompts.
💭 Discussion Points
- What are the advantages of soft prompts over hard prompts?
- How might prompt length affect performance?
- Can you think of tasks where this approach might struggle?
🧠 Quiz: Soft Prompt Tuning
Question 1
What percentage of parameters are typically trainable in soft prompt tuning?
- a) 50%
- b) 10%
- c) 1%
- d) 0.01%
Question 2
Which component is learned during soft prompt tuning?
- a) Model weights
- b) Attention mechanisms
- c) Prompt embeddings
- d) Loss function
Question 3 (Code Challenge)
What’s missing in this code?
1
2
3
soft_prompt = nn.Parameter(torch.randn(10, 768))
# Missing: ___________
optimizer = torch.optim.Adam([soft_prompt], lr=0.001)
🎯 PEFT Technique #2: Prefix Tuning
🤔 Curious Question
“What if we could control the model’s ‘thinking process’ by adding trainable prefixes to its internal representations?”
Core Concept
- Add trainable prefix vectors to key-value pairs in attention layers
- Model learns task-specific “context” at each layer
- More expressive than prompt tuning
📊 Prefix Tuning Architecture
1
2
3
4
Layer 1: [PREFIX_K, PREFIX_V] + [ORIGINAL_K, ORIGINAL_V]
Layer 2: [PREFIX_K, PREFIX_V] + [ORIGINAL_K, ORIGINAL_V]
...
Layer N: [PREFIX_K, PREFIX_V] + [ORIGINAL_K, ORIGINAL_V]
🔧 Implementation Challenge
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class PrefixTuning(nn.Module):
def __init__(self, model, prefix_length, num_layers, hidden_size):
super().__init__()
self.model = model
self.prefix_length = prefix_length
# TODO: Create prefix parameters for each layer
# Hint: Need separate prefixes for keys and values
self.prefix_keys = nn.ParameterList([
nn.Parameter(torch.randn(prefix_length, hidden_size) * 0.1)
for _ in range(num_layers)
])
self.prefix_values = nn.ParameterList([
# TODO: Complete this
])
# Freeze original model
for param in self.model.parameters():
param.requires_grad = False
def forward(self, input_ids, attention_mask):
# TODO: Implement forward pass with prefix injection
# This requires modifying attention computation
pass
# Simplified usage with Hugging Face
from transformers import GPT2LMHeadModel
from peft import PrefixTuningConfig, get_peft_model
model = GPT2LMHeadModel.from_pretrained("gpt2")
config = PrefixTuningConfig(
task_type="CAUSAL_LM",
num_virtual_tokens=30, # prefix length
token_dim=768,
num_transformer_submodules=2
)
model = get_peft_model(model, config)
🎮 Interactive Exercise
Scenario: You’re building a chatbot for customer service. How would prefix tuning help compared to prompt tuning?
**
🧠 Quiz: Prefix Tuning
Question 1
Where are prefix parameters added in prefix tuning?
- a) Input embeddings only
- b) Output layer only
- c) Key-Value pairs in attention layers
- d) Loss computation
Question 2 (True/False)
Prefix tuning typically requires more parameters than soft prompt tuning.
Question 3 (Code Debug)
Find the bug:
1
2
3
prefix_keys = nn.Parameter(torch.randn(10, 768))
prefix_values = nn.Parameter(torch.randn(10, 768))
# Bug: These should be ParameterList for multiple layers!
Answers: 1-c, 2-True, 3-Should use ParameterList for multiple layers
🎯 PEFT Technique #3: Low Rank Adaptation (LoRA)
🤔 Curious Question
“What if most of the knowledge needed for a new task already exists in the model, and we just need to make small adjustments?”
Core Concept: Matrix Decomposition Magic
Instead of updating weight matrix W directly:
1
W_new = W_original + ΔW
LoRA approximates ΔW as a low-rank decomposition:
1
ΔW = A × B (where A is m×r and B is r×n, r << min(m,n))
📊 Visual Representation
1
2
3
4
Original Layer: X → W → Y
LoRA Layer: X → W → Y
↓ ↑
A → B (low-rank path)
🔧 Implementation Deep Dive
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import math
class LoRALinear(nn.Module):
def __init__(self, original_layer, rank=16, alpha=32, dropout=0.1):
super().__init__()
self.original_layer = original_layer
self.rank = rank
self.alpha = alpha
# Freeze original weights
for param in self.original_layer.parameters():
param.requires_grad = False
# Get dimensions
in_features = original_layer.in_features
out_features = original_layer.out_features
# TODO: Initialize LoRA matrices A and B
# Hint: A should be (out_features, rank), B should be (rank, in_features)
self.lora_A = nn.Parameter(torch.randn(out_features, rank))
self.lora_B = nn.Parameter(torch.zeros(rank, in_features))
# TODO: Initialize A with Kaiming normal, B with zeros
nn.init.kaiming_normal_(self.lora_A, a=math.sqrt(5))
self.dropout = nn.Dropout(dropout)
self.scaling = self.alpha / self.rank
def forward(self, x):
# TODO: Implement forward pass
# original_output = ?
# lora_output = ?
# return original_output + lora_output * scaling
original_output = self.original_layer(x)
lora_output = self.dropout(x) @ self.lora_B.T @ self.lora_A.T
return original_output + lora_output * self.scaling
# Practical LoRA with Hugging Face
from peft import LoraConfig, get_peft_model
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
lora_config = LoraConfig(
r=16, # rank
lora_alpha=32, # scaling parameter
target_modules=["c_attn", "c_proj"], # which layers to adapt
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
print(f"Trainable parameters: {model.num_parameters(only_trainable=True):,}")
🎯 Parameter Efficiency Calculator
Challenge: Calculate trainable parameters for different ranks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def calculate_lora_params(original_dim, rank, num_layers):
"""
TODO: Complete this function
Each LoRA layer adds: rank * (in_features + out_features) parameters
"""
params_per_layer = rank * (original_dim + original_dim)
total_params = params_per_layer * num_layers
return total_params
# Test your function
original_params = 175_000_000_000 # 175B
lora_params = calculate_lora_params(4096, rank=16, num_layers=96)
efficiency = (lora_params / original_params) * 100
print(f"Parameter efficiency: {efficiency:.4f}%")
💡 Advanced LoRA Concepts
- Rank Selection: Higher rank = more capacity but more parameters
- Target Modules: Usually attention layers (Q, K, V, O)
- Scaling Factor: α/r ratio affects adaptation strength
🧠 Quiz: LoRA Deep Dive
Question 1
If a linear layer has dimensions 1024×1024 and LoRA rank=8, how many parameters does LoRA add?
- a) 8,192
- b) 16,384
- c) 32,768
- d) 1,048,576
Question 2 (Code Challenge)
Complete the LoRA forward pass:
1
2
3
4
5
def forward(self, x):
original = self.original_layer(x)
# TODO: Complete LoRA computation
lora = x @ self.lora_B.T @ _____ * self.scaling
return original + lora
Question 3 (Conceptual)
Why is matrix B initialized to zeros in LoRA?
Answers: 1-b (8×2048), 2-self.lora_A.T, 3-To ensure initial LoRA output is zero
📊 Quantization Fundamentals
Setting the Stage for QLoRA
🤔 Curious Question
“How can we represent a 32-bit number using only 4 bits without losing too much information?”
What is Quantization?
Converting high-precision numbers (FP32) to lower precision (INT8, INT4) to save memory and computation.
Types of Quantization
- Post-Training Quantization (PTQ)
1 2 3 4
# Convert trained FP32 model to INT8 quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 )
- Quantization-Aware Training (QAT)
1 2 3
# Train with quantization in mind model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm') prepared_model = torch.quantization.prepare_qat(model)
🔢 Quantization Math Challenge
Linear Quantization Formula:
1
quantized_value = round((float_value - zero_point) / scale)
Your Task: Implement quantization and dequantization
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
def quantize_tensor(tensor, bits=8):
"""
TODO: Implement linear quantization
Steps:
1. Find min and max values
2. Calculate scale and zero_point
3. Quantize values
"""
qmin = 0 # for unsigned quantization
qmax = (2 ** bits) - 1
min_val = tensor.min()
max_val = tensor.max()
# TODO: Calculate scale
scale = (max_val - min_val) / (qmax - qmin)
# TODO: Calculate zero_point
zero_point = qmin - min_val / scale
zero_point = torch.clamp(zero_point.round(), qmin, qmax)
# TODO: Quantize
quantized = torch.clamp(
torch.round(tensor / scale + zero_point), qmin, qmax
)
return quantized, scale, zero_point
def dequantize_tensor(quantized, scale, zero_point):
"""TODO: Implement dequantization"""
return scale * (quantized - zero_point)
📊 Memory Savings Visualization
Precision | Bits | Memory for 1B params | Relative Size |
---|---|---|---|
FP32 | 32 | 4 GB | 100% |
FP16 | 16 | 2 GB | 50% |
INT8 | 8 | 1 GB | 25% |
INT4 | 4 | 500 MB | 12.5% |
🎯 PEFT Technique #4: QLoRA (Quantized LoRA)
🤔 Curious Question
“What if we could get the benefits of LoRA while using 4x less memory for the base model?”
QLoRA Innovation
Combines the best of both worlds:
- Base model: Quantized to 4-bit (frozen)
- LoRA adapters: Full precision (trainable)
- Gradients: Computed through dequantization
🔧 QLoRA Architecture
1
2
Input → Quantized Base Model → Dequantize → LoRA Adapters → Output
(4-bit, frozen) (FP16, trainable)
Implementation with BitsAndBytes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import LoraConfig, get_peft_model
# TODO: Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Normal Float 4-bit
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True, # Nested quantization
)
# Load quantized model
model = AutoModelForCausalLM.from_pretrained(
"microsoft/DialoGPT-large",
quantization_config=bnb_config,
device_map="auto"
)
# TODO: Add LoRA configuration
lora_config = LoraConfig(
r=64, # Higher rank for complex tasks
lora_alpha=128, # 2x rank for scaling
target_modules=[
"c_attn", # Attention weights
"c_proj", # Projection weights
],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
# Combine quantization + LoRA
model = get_peft_model(model, lora_config)
# Check parameter efficiency
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print(f"Percentage trainable: {100 * trainable_params / total_params:.2f}%")
🎮 Hands-On Challenge: QLoRA Fine-Tuning
Complete this training loop:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from transformers import TrainingArguments, Trainer
# TODO: Configure training arguments
training_args = TrainingArguments(
output_dir="./qlora-results",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=100,
num_train_epochs=3,
learning_rate=2e-4,
fp16=True,
logging_steps=25,
optim="paged_adamw_32bit", # Memory-efficient optimizer
lr_scheduler_type="cosine",
save_strategy="epoch",
# TODO: Add more arguments
)
# TODO: Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
# TODO: Add data collator
)
# Train the model
trainer.train()
# Save only LoRA weights (a few MB!)
model.save_pretrained("./my-qlora-adapter")
💡 QLoRA Advanced Features
- Normal Float 4-bit (NF4): Optimized for normal distributions
- Double Quantization: Quantize quantization constants
- Paged Optimizers: Handle memory spikes during training
🧠 Final Quiz: QLoRA Mastery
Question 1
What’s the typical memory reduction when using 4-bit quantization?
- a) 2x
- b) 4x
- c) 8x
- d) 16x
Question 2 (Code Challenge)
Which quantization type is best for neural network weights?
1
2
3
bnb_config = BitsAndBytesConfig(
bnb_4bit_quant_type="___", # fp4 or nf4?
)
Question 3 (Scenario)
You have a 70B parameter model and want to fine-tune it on a single 24GB GPU. Which approach would work best?
- a) Full fine-tuning
- b) LoRA with FP16
- c) QLoRA with 4-bit
- d) Prompt tuning only
Answers: 1-b, 2-nf4, 3-c
🎯 PEFT Techniques Comparison
Interactive Comparison Table
Technique | Trainable Params | Memory Usage | Performance | Use Case |
---|---|---|---|---|
Prompt Tuning | ~0.01% | Lowest | Good for simple tasks | Few-shot adaptation |
Prefix Tuning | ~0.1% | Low | Better context control | Dialogue systems |
LoRA | ~0.1-1% | Medium | High performance | General fine-tuning |
QLoRA | ~0.1-1% | Lowest | High performance | Large models, limited GPU |
🎮 Decision Tree Exercise
Scenario-Based Challenges:
- Startup with limited budget: You have a 13B model and need to adapt it for 5 different tasks. GPU memory: 16GB.
- What would you choose and why?
- Research lab: You want to understand how different layers contribute to task performance.
- Which technique gives you the most insights?
- Production system: You need to serve 100 different fine-tuned versions of the same model.
- How would you optimize for storage and serving?
🛠️ Practical Implementation
🎯 Mini-Project: Build Your Own PEFT Pipeline
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class PEFTComparison:
def __init__(self, base_model_name):
self.base_model_name = base_model_name
self.models = {}
def add_prompt_tuning(self, prompt_length=20):
"""TODO: Implement prompt tuning setup"""
pass
def add_lora(self, rank=16, alpha=32):
"""TODO: Implement LoRA setup"""
pass
def add_qlora(self, rank=64, alpha=128):
"""TODO: Implement QLoRA setup"""
pass
def compare_efficiency(self):
"""Compare parameter efficiency across techniques"""
results = {}
for name, model in self.models.items():
total = sum(p.numel() for p in model.parameters())
trainable = sum(p.numel() for p in model.parameters()
if p.requires_grad)
results[name] = {
'total': total,
'trainable': trainable,
'efficiency': trainable / total * 100
}
return results
# Your task: Complete the implementation!
🎪 Live Coding Challenge
Work in pairs to implement one PEFT technique from scratch. You have 15 minutes!
🚀 Advanced Topics & Future Directions
🤔 Curious Questions for Exploration
- AdaLoRA: What if we could dynamically adjust LoRA ranks during training?
- LoRA+: Can we improve LoRA by using different learning rates for A and B matrices?
- MultiModal PEFT: How do we adapt vision-language models efficiently?
🔬 Research Frontiers
1
2
3
4
5
6
7
8
9
10
11
12
# Emerging techniques (pseudocode)
class AdaptiveLoRA(nn.Module):
"""Dynamically prune LoRA ranks based on importance"""
def __init__(self, base_layer, max_rank=64):
# TODO: Implement adaptive ranking
pass
class LoRAPlus(nn.Module):
"""Different learning rates for LoRA matrices"""
def __init__(self, base_layer, rank=16, lr_ratio=16):
# TODO: Implement LoRA+ training
pass
🎯 Real-World Case Studies
Case Study 1: Hugging Face’s PEFT Library
- Challenge: Make PEFT accessible to everyone
- Solution: Unified API for all PEFT methods
- Impact: 10,000+ models fine-tuned with PEFT
Case Study 2: Alpaca Model
- Challenge: Create instruction-following model cheaply
- Solution: QLoRA fine-tuning of LLaMA
- Result: GPT-3.5 level performance for $600
🎮 Your Turn: Design a PEFT Strategy
Scenario: You’re tasked with creating a multilingual customer service chatbot for an e-commerce company.
Constraints:
- Base model: 7B parameters
- GPU budget: Single A100 (40GB)
- Languages: English, Spanish, French, German, Chinese
- Response time: <200ms
Your Task: Design a PEFT strategy that addresses:
- Which PEFT technique(s) to use?
- How to handle multiple languages?
- How to ensure fast inference?
- How to update for new languages?
Present your solution in groups!
📊 Performance Benchmarks
🎯 Interactive Benchmark Analysis
Task | Full Fine-Tuning | LoRA | QLoRA | Prompt Tuning |
---|---|---|---|---|
GLUE | 85.2 | 84.8 | 84.5 | 82.1 |
SuperGLUE | 71.5 | 70.9 | 70.2 | 67.8 |
Code Generation | 89.3 | 88.7 | 88.1 | 85.2 |
Dialogue | 92.1 | 91.8 | 91.3 | 89.7 |
Discussion Questions:
- Why does QLoRA perform slightly worse than LoRA?
- When might prompt tuning be preferred despite lower scores?
- How would you choose between techniques for your specific use case?
🎓 Wrap-Up Challenge: PEFT Jeopardy!
🎪 Final Interactive Game
Category: PEFT Fundamentals
- Answer: “This technique adds learnable embeddings to the input sequence”
- Question: What is Prompt Tuning?
Category: Implementation
- Answer: “The parameter that controls the magnitude of LoRA adaptations”
- Question: What is alpha (scaling factor)?
Category: Efficiency
- Answer: “The typical percentage of parameters that are trainable in LoRA”
- Question: What is 0.1-1%?
🎯 Key Takeaways
🧠 Remember These Principles:
- PEFT isn’t one-size-fits-all - Choose based on your constraints
- Parameter efficiency ≠ Performance loss - Often matches full fine-tuning
- Memory is the main bottleneck - QLoRA makes 70B+ models accessible
- Composability is powerful - Combine multiple LoRA adapters
- The field is rapidly evolving - Stay updated with latest techniques
🤔 Final Reflection Question
“Given what you’ve learned today, how would you approach fine-tuning a 175B parameter model for your dream AI application with a $1000 budget?”
Take 5 minutes to write your strategy…
📚 Resources for Continued Learning
Essential Papers
- LoRA: “Low-Rank Adaptation of Large Language Models” (Hu et al., 2021)
- QLoRA: “Efficient Finetuning of Quantized LLMs” (Dettmers et al., 2023)
- Prefix Tuning: “Optimizing Continuous Prompts” (Li & Liang, 2021)
Code Repositories
Interactive Tutorials
🎉 Thank You!
🔮 What’s Next?
- Next Session: “Retrieval Augmented Generation (RAG)”
Remember: The best way to learn PEFT is to practice PEFT! 🚀
“Parameter efficiency is not about doing less, it’s about doing more with less.”